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LETTER TO THE EDITOR 

Connection aspects of nonlinear lattice equations in (1 + 1) 
dimensions 

A Grauel 
Theoretische Physik, Universitat Paderbom, 4790 Paderbom, Federal Republic of Germany 

Received 20 September 1984 

Abstract. We consider two nonlinear lattice equations and study some geometrical features. 
We demonstrate that two nonlinear partial differential equations are deduced from the fact 
that'the SL(2, R) connection has zero curvature. 

Partial differential equations (PDES) are usually called integrable if one of the following 
properties is fulfilled: (1) the initial value problem can be solved exactly with the help 
of the inverse scattering transform; (2) they have an infinite number of conservation 
laws; (3) they have an auto Backlund transformation or a Backlund transformation 
to a linear equation; (4) besides Lie point vector fields they admit Lie Backlund vector 
fields; (5) they describe pseudospherical surfaces, i.e. surfaces of constant negative 
Gaussian curvature; ( 6 )  they can be written as covariant exterior derivatives of Lie 
algebra valued differential forms. It is conjectured that if property (1) holds, then 
properties (2)-(6) also hold. 

Furthermore, to test the integrability we can use the PainlevC property. Recently, 
Ward (1984) has introduced the PainlevC property for PDES. Let n be the number of 
the independent variables. Assume that the PDE has coefficients which are analytic on 
C". The PainlevC property is defined as follows: if S is an analytic non-characteristic 
complex hypersurface in C", then every solution of the PDE which is analytic on C"\S, 
is meromorphic on C". A weaker form of the PainlevC property given by Ward (1984) 
was proposed by Weiss et a1 (1983). Examples show that, if a nonlinear equation has 
the PainlevC property, then this equation is integrable. On the other hand, we cannot 
conclude, in general, that a PDE which is integrable has the Painlevi property. 

Crampin et a1 (1977) have introduced the curvature form on bundles to study some 
geometrical features of soliton equations in field theory, namely the Korteweg-de Vries 
(Kdv), the modified Kdv and the sine-Gordon equations. The basic idea is the relation- 
ship between the nonlinear differential equations with soliton solutions and the group 
SL(2, R). Furthermore, Crampin (1978) has deduced the Backlund transformations 
and the equations for the inverse scattering transform from the fact that the SL(2, R) 
connection has zero curvature. The connection form is explicitly given for some 
SL(2,R)-valued functions and it is shown that the connection is 'pure gauge'. In 
further investigations, I have considered the soliton connection on bundles of the 
Liouville equation (1981a), the well known nonlinear Schrodinger equation (1981b) 
and a system of partial differential equations, namely the reduced Maxwell-Bloch 
equations (1984). This system of nonlinear equations are the governing equations in 
the theory of optical self-induced transparency and they are important in the physics 
of nonlinear optics. 
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We consider nonlinear lattice equations in the so-called continuum approach. We 
investigate two lattice equations, namely a lattice which consists of a combined form 
of the modified Kdv equation and the sine-Gordon equation of Konno et a1 (1974) 

(1) U,, +iutuu + U,, -a sin U = 0 

and a nonlinear evolution equation which is a combined form of the Kdv and modified 
Kdv equation (see Wadati 1975) 

U, + ~ C Y U U ,  + 6/3u2u, + U,, = 0. (2) 

In this letter it is shown that the two lattice equations can be written as covariant 
exterior derivatives of Lie algebra valued differential forms. The basic idea is to express 
the curvature form by the covariant exterior derivative of the 1-form w on a principal 
bundle P ( M ,  G) with values in a finite-dimensional vector space V. The letter is 
organised as follows. We give a short presentation of the theory and cite some formulae 
and then we give an application to the lattice equations. Let us start with the scattering 
equations 

A 

LQ = 9 x 9  (3) 

where 

The subscript indicates partial differentiations. Q is a column vector with transpose 
(p' = ( c p ' ,  p2). The time evolution of the functions cp'(x, t )  and cp2(x, t )  is given by 

A 

AQ = 9 1 3  ( 5 )  

where 

The parameter 7) is called the eigenvalue of the scattering problem and the quantities 
q(x, t ) ,  r(x, t ) ,  A(x, t ;  q), B(x, t ;  7) and C(x, t ;  7) must be given in order to specify 
the problem which is under consideration. Rewriting (3) and (4) in matrix notation, 
we then obtain 

where j ,  k=(1 ,2 )  and x '=x,  x2= t. The quantities p4(x, t )  are interpreted as the 
components of a two-component field on the principle bundle P( M,  G). The quantities 
rij are given by the components of the matrix in (4) and ( 6 ) .  

The curvature form SZ is given by the exterior covariant derivative of the 1-form w 
on P with values in a finite-dimensional vector space V.  The curvature form can be 
written 

SZ = Vw = dw 0 h. (8) 

SZ is a 9-valued 2-form and Vw(X,,. . . , X,+I)=dw ( h X , ,  . . . , hX,, , ) ,  where 
h:  T,(P(M, G ) )  + S, is the projection of the tangential space Tp = S,O V, onto its 
horizontal subspace S,. The space V, of vertical vectors lies tangential to the fibre. 
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The exterior derivative d is unchanged in the action on forms which take their 
values in a real vector space K On sections of V O A 1 [ T p ( P ( M ,  G))] we have 

d( o’ 0 Xj ) = do’ 0 Xj, 

[ W ’ @ X i ,  W J @ 4 ] : = ( W i  A W’)@[xi, 41. 

U’ E AI( Tp) ,  ( 9 )  

where {X,};=, is a basis of K If V is a Lie algebra V =  9 we can define 

(10) 

Equation (10) relates R-valued forms to the bracket of g-valued forms. The expression 
(10) is anticommutative and satisfies the Jacobi identity. Now the curvature form (8) 
can be expressed. Let {xk}:=l be a basis of the Lie algebra 9 = SL(2, R) then from 
(8) with (9) and (10) follows 

The o k ( k  = 1,2,3) are arbitrary 1-forms and [X, X,] represents the commutator of 
the quantities xk. Let 

X I = ( ]  O)>. x2=(o 0 1  o), x3=(] 0 0  o) 
0 -1 

be a basis of 9. In view of (7) the 1-forms are expressible as follows 

U ’ =  -(T d x + A  dt),  w 2 =  -(q d x + B  dt),  w 3 =  - ( r d x + C  dt).  (13) 

If we take into account (12) and (13) then the curvature form (11) is given by 

R =  ( qC- rB -A, )dxAdtOX,  

+ ( 27B -2qA + 4, - B,) dx A dtOX2 

+ (-277C + 2rA + I ,  - C,) dx A d ?  0 X,. 

(a) Nonlinear one-dimensional lattice equation. With the choice 

r = - q = f U, 
A=4773-i77~:+(a/477) COS U, 

B = f u , , + ~ ~ , , + 2 ~ ~ u , + $ ~ ~ + ( a / 4 ~ )  sin U, 
c = -I 2uxxx+77uxx-2772u,+~u~+(a /477)  sin U, 

it follows from (14) that 

R = dx A d ?{ ( - f U,, - f U,,,, - t u  f; U,, + fa sin U )  0 X2 

+ (411x1 + f~,,,, + +S;U, -$a sin U )  o x,} 

or 

(0 -3. a= (uxr  +&4:uXx+ U,, -a  sin U )  dx A dt  0 

If R=O then it follows that 

U,, +$u:u,, + U,,, - a sin U = 0. 
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(b) If we choose 

q = u ,  r = - a - @ u ,  

A = - 4 ~ 7 ~  + 217qr + rq, - qr,, 
B =  - 4 ~ 2 q - 2 ~ q , + 2 q 2 r - q x x ,  

c = -4~7'r+ 277r, + 2qr2 - r,,, 

it follows from (14) that 

(: 3 Cl = (U, + 6auu, + 6@u2u, + U,,,) dx A dt  O 

(; :)* - @(  U, +6auux +6@u2u,  + uxXx) dx A d t O  

From Cl = 0 we conclude that 

U, + ~ ( Y U U ,  + 6@42u, + U ,  = 0. (21) 

Concluding remarks. It is pointed out that the linear scattering problem for the lattice 
equations may be described in terms of a linear connection on a principal SL(2, R)- 
bundle. From the condition Cl = 0, we conclude that w satisfies the structure equation 
of Maurer-Cartan, dw +$w, w ] = O ,  and that the connection in P ( M ,  G) is flat. Con- 
sequently the flat connection has zero curvature. Therefore, the lattice equations are 
integrable. 

A valuable test for integrability of PDES is the Painlev6 property. Let us consider 
here the weaker form of the Painlevi property of Weiss er al (1983). The solution of 
a given PDE can be represented locally as a single-valued expansion about its movable 
singular manifold. This means that if U is a solution of a PDE, we can write the PainlevC 
expansion 

m 

U = @ "  c UjW', (22) 
j = O  

where Q, is the analytic function for which the equation Q, = 0 defines the singular 
manifold. We cannot apply the Painlevi test directly to equation (1) because of the 
nonlinearity of the term sin U. Therefore we introduce the transformation U = exp(iu) 
into equation ( 1 )  and obtain 

3 2 2  2 U U,,, - 8 U' u,u,, - 6 U U, ,  + 2 1 UU: U,, - 9 U: - 2 u2 U,U, + 2 u3 U,, - a u 5  + au3 = 0. (23) 

If we perform the PainlevC test we obtain for the dominant behaviour n = -4 and the 
resonances at rl = -3, r2 = - 1 ,  r3 = 4 and r, = 6 for equation (23), and n = - 1  and the 
resonances at rl = - 1 ,  r, = 3 and r3 = 4 for equation (2). Moreover, we obtain that both 
nonlinear equations are integrable in the sense of Weiss. 
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